Angle Addition Formulas

Consider two angles a and bin the following unit circle diagram such that

$$\angle APC \cong \angle (a+b)$$

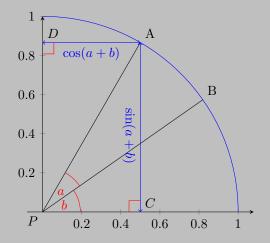
and therefore

ar

$$PC = DA = \cos(a+b)$$

ad

$$PD = CA = \sin(a+b)$$

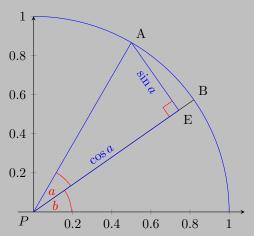


First we drop a perpendicular from A to \overrightarrow{PB} , creating point E. Since $\triangle PEA$ is a right triangle with a hypotenuse of length 1, we see that

$$PE = \cos a$$

and

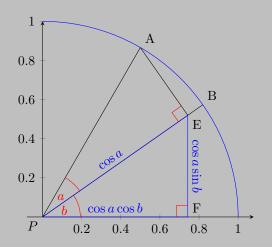
$$EA = \sin a$$



Next we drop a perpendicular from E to the x axis, creating point F. Since $\triangle PFE$ is a right triangle with a hypotenuse of length $\cos a$, we see that

 $PF = \cos a \cos b$ and

 $FE = \cos a \sin b$

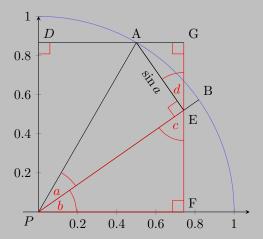


Now we intersect \overrightarrow{FE} and \overrightarrow{DA} , creating point G and completing rectangle PFGD.

From $\triangle PFE$ we see that $\angle b$, $\angle c$ and $\angle PFE$ add to 180°. Since \overrightarrow{FG} is a straight line, $\angle d$, $\angle c$ and $\angle PEA$ add to 180°.

Since $\angle PFE$ and $\angle PEA$ are both right angles and therefore congruent,

$$\angle d \cong \angle b$$

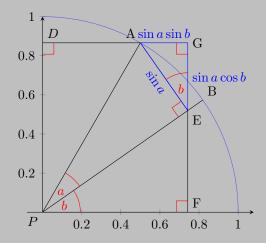


Since $\triangle EGA$ is a right triangle with a hypotenuse of length sin a, we see that

 $EG = \sin a \cos b$

and

 $AG = \sin a \sin b$



Putting the pieces together, we have

$$AC = EG + EF$$

or

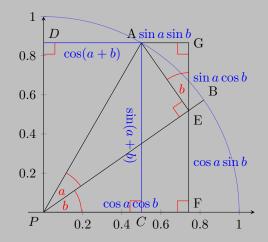
 $\sin(a+b) = \sin a \cos b + \cos a \sin b$

and

$$AD = PF - AG$$

or

 $\cos(a+b) = \cos a \cos b - \sin a \sin b \quad .$



Remember

sin(a + b) = sin a cos b + cos a sin bcos(a + b) = cos a cos b - sin a sin b

Each formula contains one each of $\sin a$, $\cos a$, $\sin b$ and $\cos b$ in pairs of a with b.

$$\sin(a + 0) = \sin(a)1 + \cos(a)0 = \sin a$$

$$\sin(0 + b) = 0\cos b + 1\sin b = \sin b$$

$$\cos(a + 0) = \cos(a)1 - \sin(a)0 = \cos a$$

$$\cos(0 + b) = 1\cos b - 0\sin b = \cos b$$

Angle Subtraction Formulas Since $\cos(-b) = \cos b$ and $\sin(-b) = -\sin b$ we can show $\sin(a-b) = \sin a \cos(-b) + \cos a \sin(-b)$ $= \sin a \cos b - \cos a \sin b$ and

$$\cos(a-b) = \cos a \cos(-b) - \sin a \sin(-b)$$
$$= \cos a \cos b + \sin a \sin b \quad .$$

Since $15^\circ = 45^\circ - 30^\circ$ we can show

$$\sin 15^\circ = \sin 45^\circ \cos 30^\circ - \cos 45^\circ \sin 30^\circ$$
$$= \left(\frac{\sqrt{2}}{2}\right) \left(\frac{\sqrt{3}}{2}\right) - \left(\frac{\sqrt{2}}{2}\right) \left(\frac{1}{2}\right)$$
$$= \frac{\sqrt{2}}{4} \left(\sqrt{3} - 1\right) \approx 0.259$$

and

 $\cos 15^\circ = \cos 45^\circ \cos 30^\circ + \sin 45^\circ \cos 30^\circ$ $= \left(\frac{\sqrt{2}}{2}\right) \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{\sqrt{2}}{2}\right) \left(\frac{1}{2}\right)$ $= \frac{\sqrt{2}}{4} \left(\sqrt{3} + 1\right) \approx 0.966 \quad .$

Also, $\sin 75^\circ = \cos 15^\circ$ and $\cos 75^\circ = \sin 15^\circ$.

Double Angle Formulas

$$\sin(2a) = \sin(a + a)$$

= $\sin a \cos a + \cos a \sin a$
= $2 \sin a \cos a$

and

$$\cos(2a) = \sin(a+a)$$
$$= \cos a \cos a - \sin a \sin a$$
$$= (\cos a)^2 - (\sin a)^2$$

Half Angle Formulas

Let $\theta = 2a$, so from the double angle formula we get

$$\cos\theta = (\cos\theta/2)^2 - (\sin\theta/2)^2$$

Substituting $(\cos \theta/2)^2 = 1 - (\sin \theta/2)^2$ gives us

$$\cos \theta = 1 - 2(\sin \theta/2)^2$$
$$\cos \theta - 1 = -2(\sin \theta/2)^2$$
$$(1 - \cos \theta)/2 = (\sin \theta/2)^2$$

and therefore

$$\sin\theta/2 = \pm\sqrt{(1-\cos\theta)/2}$$

where the sign depends on the quadrant.

Again from

$$\cos \theta = (\cos \theta/2)^2 - (\sin \theta/2)^2$$

substituting
$$(\sin \theta/2)^2 = 1 - (\cos \theta/2)^2$$
 gives us
$$\cos \theta = 2(\cos \theta/2)^2 - 1$$
$$1 + \cos \theta = 2(\cos \theta/2)^2$$
$$(1 + \cos \theta)/2 = (\cos \theta/2)^2$$

and therefore

$$\cos\theta/2 = \pm\sqrt{(1+\cos\theta)/2}$$

where the sign depends on the quadrant.

We now have closed form solutions for trigonometric functions for $\theta = n(\pi/12) = n(15^{\circ})$ for any integer n.

Using the half angle formulas we can get closed form solutions for $\theta = n(\pi/24), n(\pi/48), n(\pi/96), \ldots$ for any integer n.

This is how Archimedes was able to approximate the circumference of a circle $(2\pi r)$, starting with a hexagon and doubling the number of sides repeatedly.